Saturday, 28 May 2016

Geometric Progression

Geometric progression example question:

1. write down the first five terms of the geometric progression which has first term 1 and common ratio ½

Answer:

            
  1½, ½½, ¼½½½

2. find the 
10th and 20th terms of the GP with first term 3 and common ratio 2.

Answer:

10th
un = ar n-1
u10 = 3 x (12) 10-1
u10 = 3 x (12) 9
u10 = 3 x 512
u10 = 1536 

20th
u20 = 3 x (2) 20-1
u20 = 3 x (2) 19
u20 = 1572.864

3. find the 7th term of the GP 2, -6, 18

Answer:

un = ar n-1
u7 = 2 x (-3) 7-1
u7 = 2 x (-3) 6
u7 = 1456



Friday, 27 May 2016

Arithmetic progressions

Arithmetic progressions example question: 

1. write down the 
first five term of the AP with first term 8 and common difference 7 
    
   Answer:

              
 8th , 15th, 22nd, 29th, 36th, 

2. write down the
 first five terms of the AP with first term 2 and common difference -5

Answer:
            2th, -3th, -8th, -13th, -18th, 

3, find the 
17th term of the AP with first term 5 and common difference 2

Answer:
a = 5
d = 2

un = a (n - 1) d
u17 = 5 + (17 - 1) 2
u17 = 5 + (16) 2
u17 = 5 + 32
u17 = 37



Thursday, 26 May 2016

Indices

Example :-
1.   Find the values of the unknown in the following equation
a)   10k = 0.01
b)   (1/5)h = 1
Answer:-
a) 10k = 0.01
10k = 1/100
10k = 1/10-2
10k = 10-2
K = -2

b) (1/5) h = 1
(1/5) h = (1/5) 0
H = 0

2.   Use the laws & properties of indices to simplify the given expressions:-
a)   2h-2 x 4h5
b)   RT9 ÷ R-1T3
Answer:-
a)   2h-2 x 4h5
= 8h-2+5
= 8h3

b)   RT9 ÷ R-1T3
= R1 - - 9 T9-3
=R2T6

3.   Solve the following of indices, evaluate:-
a) 3x = 27
b) 81 = 92x+3
Answer:-
a) 3x = 27
3x = 33
X = 3
   
b) 81 = 92x+3
92 = 92x+3
2 = 2x + 3
2-3 = 2x
-1 = 2x
-½ = x

Wednesday, 4 May 2016

Logarithm

Law of Logarithm
Loga1 = 0
Logam + logan = loga(m x n)
Logab n = n x logab

Logam – logan = loga(m/n)


Example:-
1.   Write the following indices to logarithms form:-
a)   52 = 25
b)   1642
c)   125 = 53

Answer:-
a)   Log525 = 2
b)   Log416 =2
c)   Log5125 = 3

2.   Write is log5625?
Log5625 = ?
5x = 625
5x = 54
Log5625 = 4


3.   Log77 + 4log73-2log79

= 1 + log734 – log792
= 1 + log781 – log781
= 1

4.   Solve the equation:-
Log3 (2 + x) = 4
Log34 = 2 + x
81 = 2 + x
81 – 2 + x

79 = x